Paradise Irrigation District Water Supply Recovery Program Update

May 14, 2019 Sami Kader, P.E. Water Works Engineers

Summary of Progress Since Last Town Hall Meeting

- Last Town Hall Meeting was 7 weeks ago (March 27th)
 - We knew we had a problem with VOC contamination
 - We said we were developing a plan
 - The plan could take up to 3 years to execute (until 2022)
 - We said we would work on optimizing the approach and being responsive to the community's need for clean water
- Since then
 - A detailed Recovery Plan was developed and delivered in mid-April
 - Initial implementation of the Recovery Plan started in April and is ongoing

Interim Water Supply

- Policies and procedures are in place to provide interim supply of construction and/or irrigation water supply to anyone requesting it for any service which serves a burned lot
 - Requests for Interim Water to be made to PID. Four step process
 - Contact PID (by phone or in person) to make a request for Interim Water Supply
 - Pay the fee for the cost of materials, installation and testing of a backflow preventer (between \$546 \$957 depending on service size)
 - PID will schedule the installation of the backflow preventer and restored service
 - Once Install is complete, water use can begin under the current use advisory
 - Still only readiness to serve fee will apply, no demand charge for Interim Water Supply

Recovery Plan

- Draft Recovery Plan Presented at PID
 Board Meeting April 17th
- Includes five major components
 - Temporary Water Supply
 - Preparation of Sampling Sites
 - Sampling
 - Replacement of Damaged Infrastructure
 - Return to Potable Service
- This is a living document. As we learn more we will make adjustments

WATER SYSTEM RECOVERY PLAN

April 12, 2019

Recovery Plan

- 1,000,000 feet of water main
- 10,500 service laterals
- 1400 standing structures
- Includes a plan for prioritizing testing and recovery
- With prioritization, recovery timelines improve
 - Mid to late 2020 for standing structures
 - 2021 for all services

PID Water Infrastructure

MCLs and PPBs

- MCL is Maximum Contaminant Limit
 - For Benzene
 - CA MCL is 1 part per billion (ppb)
 - Federal MCL is 5 ppb
- For VOCs, the MCL is based on the effects of chronic (lifetime) exposure

Summary so far...

- The Recovery Plan was drafted
- Interim Water Supply is available to customers
- Implementation of the Recovery Plan has begun

Recovery Plan Implementation

- PID Staff have applied intense efforts to begin implementation of the Recovery Plan
- Mutual Aid from other water utilities are augmenting PID Staff in the initial steps of Recovery Plan implementation
 - EBMUD 6 water utility professionals for a week in early May
 - SFPUC 14 water utility professionals for a week in early June
- In early May, this team was able to prepare and sample approximately 20 sites per day (each site with a service and main sample)

Sampling Protocol for Standing Structures

Sampling Protocol Video

- Working with our partners at CalOES, a video was produced to describe this sampling protocol
- Let's take a look!

How many samples have been taken?

- Over 800 samples taken to date
- 635 sample analysis results available as of May 9th
- Sampling and analysis is ongoing

How much VOC contamination is there?

- 501 locations sampled and analyzed
- 207 VOC detect (41%)
- 109 over MCL (22%)

Where has sampling been done?

That is a lot of data

- What does this data mean?
 - Water in the majority of sampled laterals serving standing structures are non-detect for regulated VOCs
 - Contamination is focused on samples from laterals serving burned structures
 - Water in the majority of sampled mains are non-detect for regulated VOCs
- What are the limitations of this data?
 - Not all of the data is non-detect
 - It is one sample in time will it change?

If a lateral is uncontaminated, then what?

Will uncontaminated laterals become contaminated by neighboring laterals? Will contaminated laterals cause main contamination?

Contaminant Dispersion

Dispersion is the movement of contamination through the water

Does modeling of contaminant dispersion show that uncontaminated laterals will become contaminated?

Dispersion modeling, using Division of Drinking Water methodology, shows that even with heavy contamination of service laterals (>100,000 ppb) mains will not become contaminated via dispersion

Experts agree that dispersion not a contamination threat

Dilution

- Dilution is another possible source of contamination
- If a system which has contaminated laterals depressurizes, the water in the laterals drains, mixes, and is re-distributed, dilution modeling shows that under some conditions (especially with smaller mains and highly contaminated laterals), a lateral previously served clean water could have contaminated water supplied to it.
- This could occur during main breaks with significant water loss or times of significant local water use events (e.g. fire fighting)
- This is a remaining concern

Two choices for Recovery

Original Plan: Test all services and mains before returning any to potable service

- Most conservative
- Will take several years to complete
- Still does not result in 100% certainty

Current Thinking: Once a service and main have tested non-detect, return that service to potable

- Allows for the water utility to better support rebuilding efforts
- Mathematical modeling <u>and</u> real data substantiate this approach
- Requires vigilance and communication of ongoing test results to the entire community

Conditions for returning a lateral to potable service

- Lateral and main test at the lateral are non-detect for VOC
- Main which serves the lateral is flowing
- Water utility professionals' judgement indicate that the distribution system in the area that serves that lateral supports return to potability

Steps in the return of a lateral to potable service

- Once a service lateral has been determined to be potable, the property owner will be notified in writing
- Ongoing retesting of mains will be done in order to maintain vigilance of water quality in the mains

Possible conditions for rescinding renewed potable service

- Main break or other depressurization event
 - Main will be flushed and disinfected following main repair, per current standard operating procedures
 - The main will be resampled for VOCs following main repair
 - If resampling shows VOC contamination, potable service will be rescinded
- Ongoing testing shows change in the character/behavior of the contamination
 - If we find that ongoing testing points to a different character to the contamination, we will share that with the public and take appropriate action

Planned next steps

- Sample all standing structures and return to potable service as appropriate, as quickly as we can
- Develop plan for supplying <u>potable</u> water service to customers moving back to properties with burned structures
 - Temporary housing
 - Permanent re-build (accounting for fire sprinklers in new construction)
 - New customers
- Develop plan for long-term replacement of all contaminated laterals
- Working with FEMA and CalOES to secure funding for the Recovery

Questions

Sami Kader. P.E. Water Works Engineers samik@wwengineers.com

